Comparison of the Motion Accuracy of a Six Degrees of Freedom Radiotherapy Couch with and without Weights
نویسندگان
چکیده
In this study, we compared the motion accuracy of six degrees of freedom (6D) couch for precision radiotherapy with or without weights attached to the couch. Two digital cameras were focused on the iso-center of a linear accelerator. Images of a needle which had been fixed to the 6D couch were obtained using the cameras when the couch moved in translation and rotation around each axis. The three-dimensional (3D) coordinates of the needle were calculated from coordinate values in the images. A coordinate error of the needle position relative to the theoretical position was calculated. The errors were obtained with or without a 60 kg weight attached to the 6D couch, and these errors were compared with each other. The mean distance of the 3D error vectors for the weighted test was 0.21 ± 0.11 mm, and ˃0.16 ± 0.09 mm for the non-weighted test (p < 0.05). However, the difference of two values was 0.06 mm which is smaller than the minimum distance the 6D couch system can move correctly. The variance of 0.16 mm for the Y coordinate errors for the weighted test only was larger than that for the non-weighted test, which was 0.06 mm (p < 0.05). We found that a total weight of 60 kg did not affect the accuracy of the 6D couch clinically. However, the variance of the Y coordinate errors was increased. This might suggest that the addition of this weight increase the uncertainty of the motion of the 6D couch.
منابع مشابه
Treatment couch positioning uncertainties using an EPID-based method
Introduction: The accuracy of patient positioning plays an important role for radiotherapy tasks. Short and automated Quality Assurance (QA) programs are becoming one of the challenging tasks in Radiotherapy. The current study, investigates the accuracy of treatment couch positioning with four degrees of freedom (4DoF) using a fast and accurate method based on an image acquired...
متن کاملVertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کاملAn Efficient Strain Based Cylindrical Shell Finite Element
The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...
متن کاملA feasibility study of dynamic verification for tumor target delineation and dose delivery using a six degrees of freedom motion phantom
Background: The dynamic phantom is one of the best tools to study the impact of motion on tumor target delineation and absorbed dose verification during dose delivery. Materials and Methods: this study, a 6-DOF (degrees of freedom) phantom was designed following the stacked serial kinematics and assembled by six commercial motion stages to generate 6-DOF motion, which were RotX (pitch, around X...
متن کاملQuantification and modelling of the dosimetric impact of the treatment couch in volumetric modulated arc therapy (VMAT)
Background: As the volumetric modulated arc therapy (VMAT) becoming a main role of treatment ways, the effect of couch top becomes more significant. It is imperative to re-evaluate the couches that previously may have been considered of no importance during early treatment techniques. The impact of couch top on radiation delivery was explored and the couch model was tested with the aim of reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013